top of page
Search
Nuno Silva

UnifAI's AI outperforms traditional water sensing

Assessment of UnifAI Technology’s Artificial Intelligence Tools and Capabilities, Using Real Industry Data on Water Quality in Pipe Infrastructure


SUMMARY

Independent testing of UnifAI Technology’s AI performance against a leading water industry incumbent solution using 3,368,928 historic data points collected over a two-year period concluded that the UnifAI AI outperformed the incumbent state of art digital sensing solution for on-line water quality measurement.


BACKGROUND

UnifAI Technology has a Data Acquisition and Visualisation Engine (DAVE) and Advanced Neural Networks and AI capability (ANNA). Together these provide a horizontal capability with applicability across multiple sectors.


Aliaxis worked with Water-link to evaluate the effectiveness of UnifAI Technology’s Artificial Intelligence capability within the water sector.


THE DATA

First batch: Water-link prepared 141,663 data samples, each with 12 parameters, from a surface water at the production intake covering the period April 2019 to December 2019.

In addition, Water-link provided a list of alerts and alarms for the same period identified by the incumbent on-line sensing system, and determined the thresholds for the alarms. No information was provided to UnifAI as to the nature of the alerts/alarms or how they were calculated.

Purpose: training data for the AI.


Second batch: subsequently, Water-link provided a further 139,081 data samples, each with the same 12 parameters, from the same infrastructure covering the period January 2020 to August 2020, without any data on alerts/alerts for this period.

This was the testing data for the AI.


THE CHALLENGE

The challenge was a ‘blind test’ in which the raw data was provided to UnifAI without context. No domain knowledge was implemented or embedded into the test. The outputs from UnifAI’s AI after it had ‘learned’ how and when to identify alerts/alarms was compared with the outputs from the incumbent on-line sensing solution.


Training

The UnifAI Data Acquisition tool was used to ingest and clean the training data provided by Water-link.


UnifAI’s ANNA then conducted a series of training exercises using the 80/20 approach:

· 113,330 samples (80% of the data) were used to train the neural network to identify and understand the multiparameter and multi-dimensional correlations between the raw data and the alerts/alarms.


· 28,330 samples (20% of the data) were used to test/validate the training, and to select the most appropriate neural network for the challenge.


The result was a trained neural network ready for testing.


Testing

The testing data was then given to UnifAI, and this was also ingested and cleaned.


All 139,081 samples, covering January to August 2020, were run through the neural network that ANNA had trained. The outcome was a set of alerts and alarms provided by ANNA for the second time period.


These AI-generated alerts/alarms were then independently compared with the alerts and alarms from the incumbent on-line sensing system for the same time period.


RESULTS

· 99.97% of alert and alarm outcomes from the test data (139,081 samples) were the same.


· There were 12 exceptions where alerts/alarms were raised in one solution but not the other.


· The exceptions were further investigated:

  • 9 of the 12 anomalies, the UnifAI AI was right and the incumbent system was wrong.

  • 2 of the 12 anomalies, the UnifAI AI was wrong and the incumbent system was right.

  • 1 of the 12 anomalies was a null event which we assume resulted from untrained data.

CONCLUSION

The conclusion of Aliaxis and Water-link is that the UnifAI Technology AI outperformed the incumbent state of art on-line digital sensing solution for the identification of alerts and alarms based on the parameters collected.


Phil Hughes, CEO UnifAI Technology said: “our mission is to use AI to improve the health and well-being of people, the environment and the infrastructure we use. The work done by Aliaxis and Water-link demonstrates that AI can outperform incumbent systems and the benefit of this is that we can now begin to drive down the cost of water quality measurement and management in a way that helps water utilities to improve the product they deliver to their consumers with a capability that more easily help to manage evolving risk based compliance requirements. What’s really exciting is that we believe we can begin to predict when events are likely to happen so we can help make a material difference to the compliance, quality and operations of water utilities.”


Koen Verweyen, Director New Business Development, Aliaxis said: “Working with UnifAI gave us great insights into the capabilities and value offers that AI can bring for the water utility market. Since many water utility companies are on the verge of digitalization, it’s the right moment to investigate into promising technologies and understand their underlying values.


Steven De Schrijver, former COO at Water-Link, now co-founder at Liquisens, said: “Water-link is a trendsetter in the water sector with a focus on innovation and digitalization. The effectiveness of UnifAI Technology’s Artificial Intelligence capability confirms the potential to rollout a dense water quality sensor network. These insights help us to guarantee our 100% quality assurance.”


Table 1: Differences in outcomes between UnifAI’s AI and the incumbent on-line system




ABOUT

Aliaxis is a global leader in the manufacture and distribution of advanced plastic piping systems and provide innovative solutions for water and energy.


UnifAI Technology is an data and AI company that aims to simplify artificial intelligence for real world applications with a focus on using AI to improve the health and well-being of people, our environment and the infrastructure we use.


Water Link is the integral water company for Antwerp and 7 regions surrounding it. It’s the biggest water producer in Flanders, Belgium and serves citizens, industry and other water companies. It provides clean drinking water for its 642.000 daily users. In addition to drinking water it is also responsible for the sewer-systems of more than 10 cities. Together with their 500 employees that stand for loyalty, sustainability and innovation.


Download the report here:



Comments


bottom of page